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ABSTRACT

Precise food price forecasting is crucial for any country, and searching for appropriate 
approach(s) from an assortment of available strategies toward this objective is an open 
problem. The current Indian Wholesale Price Index (WPI) series contains sixty individual 
food items in the 'manufacture of food product' category. This work considered the monthly 
data from April 2011 to June 2022, i.e., one hundred thirty-five months' data of these sixty 
WPIs. The researchers extracted the linearity, curvature, and autocorrelation features for 
each WPI. The curvature and linearity-based grouping of these WPIs revealed that the WPIs 
are heterogeneous. This work proposed an extreme learning machine (ELM) approach for 
forecasting these WPIs. The present work employed the following twenty-two time-series 
forecasting techniques: six standard methods (Auto ARIMA, TSLM, SES, DES, TES, and 
Auto ETS), five neural networks (Auto FFNN, Auto GRNN, Auto MLP, Auto ELM, and 
proposed ELM), and eleven state-of-art techniques (two ARIMA-ETS based ensembles, 
an ARIMA-THETAF-TBATS based ensemble, one MLP, and seven LSTM-based models) 
to identify the best forecasting approach for these WPIs. For the majority of WPIs, the 
offered ELM attained suitable performance in the case of fifteen months of out-of-sample 
forecasting. Nearly eighty-seven percent of cases achieved high accuracy (MAPE ≤ ten) 
and outshined others. Upon accuracy comparison, both forecast-MAPE and forecast-RMSE, 

between the proposed ELM and others, this 
paper observed that the proposed ELM's 
performance is more favorable. This paper's 
findings imply that the proposed ELM 
is a promising prospect to offer accurate 
forecasts of these sixty WPIs.
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INTRODUCTION

In the present day, manufactured food products are crucial to daily life, and the food 
industry delivers various food products to the human population. Price forecasting helps 
profit maximization (Wibowo & Yasmina, 2021; Gaspar et al., 2021) and risk minimization 
(Wibowo & Yasmina, 2021; Sabu & Kumar, 2020). Accurate commodity price forecasting 
assists in effective decision-making (Choong et al., 2021). Food price forecasting adds 
value to all stakeholders, e.g., policymakers, consumers, and agriculturalists, by providing 
reliable price projections of the food items (MacLachlan et al., 2022). Researchers applied 
eclectic time-series forecasting strategies to predict the prices of food items (Menculini et 
al., 2021; Mgale et al., 2021; Dacha et al., 2021; Sanusi et al., 2022; Mahto et al., 2021). 
The works of literature exhibited that the researchers utilized an assortment of techniques, 
e.g., Autoregressive Integrated Moving Average (ARIMA) by Adam (2022), Exponential 
Smoothing (ES) by Rosyid et al. (2019), ʻError, Trend, Seasonality’ (ETS) by Purohit et 
al. (2021), Regression by Mishra et al. (2019), and Artificial Intelligence (AI) by Sanusi 
et al. (2022) to predict future prices of food items. Whereas an array of approaches exists 
for food price forecasting, and none of them is a clear winner, it is imperative that accurate 
food price forecasting becomes critical for all stakeholders. Therefore, searching for the 
most appropriate approach for price forecasting of a wide range of food items becomes 
an open problem.

Food Price Forecasting Using Several Approaches
The ARIMA (p, d, q), a linear model, has a fixed structure, is more interpretable, and 
uses historical data to predict future values. It faces difficulty in turning point prediction 
and involves subjectivity in determining the p, d, and q values. The authors applied the 
ARIMA techniques to forecast the prices of rice (Adam, 2022; Fernando et al., 2021) and 
sugar (Şahinli, 2021). The researchers used this technique for forecasting chili (Septiani 
& Setyowati, 2021), palm oil (Yee & Humaida, 2021), and numerous other items (Zhou, 
2021; Astiningrum et al., 2021; Taofik & Tiamiyu-Ibrahim, 2021) prices.

The ES technique is simple, gives a greater emphasis on recent observations, and uses 
the principle of the weighted sum (linear sum) of lags, where the current data has higher 
weights and weights reduce exponentially. It ignores the data spikes and is less effective in 
handling trends. Rosyid et al. (2019) used the following three ES techniques to forecast the 
prices of rice, chicken, beef, egg, shallot, garlic, red chili, raw chili, oil, and sugar: single 
exponential smoothing (SES), double exponential smoothing (DES), and triple exponential 
smoothing (TES). The authors (Dewi & Listiowarni, 2020; Şahinli, 2020) applied Holt-
Winters (HW) to forecast various food prices. Some researchers (Lutfi et al., 2019; Fitria, 
2018) utilized SES to predict food prices. Talwar and Goyal (2019) employed exponential 
smoothing techniques, e.g., SES, DES, and HW, to forecast coriander prices. Prakash et 
al. (2022) applied the HW approach to predict sweet potato prices.
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The ETS - a state-space approach, uses exponential smoothing and can model the 
trend and seasonality components of the data. It combines the error, trend, and seasonality 
components and offers a family of possible models. An ETS model includes a measurement 
equation that explains the observations and a few state equations expressing the transition 
of states. The authors (Purohit et al., 2021; Koblianska et al., 2021) applied it to the potato-
price forecast. Other authors utilized the ETS approach for forecasting various food item 
prices, e.g., onion (Purohit et al., 2021), rice (Wahyuni & Afandi, 2018), and salmon 
(Tharmarajah & Gjesdal, 2020).

Regression is a frequently employed quantitative technique and easily adapts to even 
challenging forecasting assignments. Time series regression, a statistical approach, uses 
autoregressive dynamics, i.e., response history and dynamics transfer from pertinent 
predictors to forecast. The authors applied different regression approaches to predict several 
food item prices, e.g., corn (Ge & Wu, 2020) and potato (Mishra et al., 2019). Asnhari et 
al. (2019) utilized it for red chili, onion, and garlic price prediction. Volkov et al. (2019) 
applied it to predict the butter, egg, and bread prices.

The Artificial Neural Network (ANN) is a prominent AI method that processes 
information inspired by biological-nervous systems and learns via examples. It has an 
innovative structure for information processing and comprises several intricately linked 
processing units called neurons that collaborate to address particular issues. ANN is flexible, 
applies universal approximators, supplies effective forecasting, and can operate on diverse 
time-series data, both linear and non-linear. The authors applied neural approach-based 
forecasting techniques to predict the future prices of various items, e.g., white beans (Sanusi 
et al., 2022), white maize (Sanusi et al., 2022), and soybean (Zhang et al., 2018). Some 
utilized ANN to forecast potato (Areef & Radha, 2020; Choudhury et al., 2019), coffee 
(Xu & Zhang, 2022b), and sugar (Xu & Zhang, 2022b) prices. A few employed ANN for 
price prediction of soybean oil (Xu & Zhang, 2022a; Xu & Zhang, 2022b), rice (Sanusi et 
al., 2022; Shao & Dai, 2018), and wheat (Shao & Dai, 2018).

Motivation

To aid the stakeholders in appropriate policymaking, dependable and precise forecasting 
of food prices plays a vital role. The wholesale price index (WPI) is a macroeconomic 
indicator. It describes the wholesale pricing of commodities and records the average change 
in wholesale prices of products. The current WPI-series of India lists sixty individual items 
in the ‘manufacture of food product’ (food-product) category.

Das and Chakrabarti (2021) developed an MLP model to forecast the WPIs of selected 
food items in India, considering the data from April 2012 to March 2017, and chose thirty-
six items from the food-product category that showed positive linearity and negative 
curvature features. This MLP [2/1/1] approach proposed by Das and Chakrabarti (2021) 
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exhibited promising results. They had not observed its applicability to other WPIs and 
have the following gap: evolvement of an efficacious forecasting strategy(s) for all the 
sixty individual items under the food-product category of the current WPI series of India.

The nonexistence of any work that explored various forecasting techniques on the WPI 
of all individual items from the food-product category of the current WPI of India and 
comprehending the significance of forecasting these WPIs, filling this gap thus becomes 
a stimulus. It motivates the present work to explore the usefulness of several standard 
time-series forecast approaches and some state-of-the-art techniques offered by others in 
forecasting all the indices of individual items from the food-product category of the WPI 
series of India. Further, it motivates this work to deliver a strategy that can provide effective 
forecasting for all these WPIs.

Objectives of the Study

•	 To propose and construct a novel neural approach that is straightforward, easy 
to use, and capable of delivering effective forecasting for most indices of the 
individual items from the food-product category of the WPI series of India.

•	 To predict out-of-sample values for these WPIs using the proposed neural approach.
•	 To predict out-of-sample values for these WPIs employing several standard time-

series forecasting approaches and some state-of-the-art forecasting techniques 
offered by others.

•	 To compare the outcomes of the offered technique with others and determine the 
most acceptable forecasting approach for the WPIs of the individual items from 
the food-product category of the WPI series of India.

METHODOLOGY

Overview of the Research

Figure 1 represents the overview of the present research. 
The researchers collected the WPI of sixty items for one hundred thirty-five months, 

extracted their linearity, curvature, and auto-correlated lag features through feature 
engineering, obtained the proposed approach’s optimized model for them, produced 
out-of-sample forecasts using the respective optimized models and other techniques, and 
evaluated the forecast performances of these approaches.

The scope of this work is limited to developing forecast models for the univariate time-
series data. Thus, the authors have only considered the univariate time-series forecasting 
models in this work and have yet to explore the impact of various influencing factors that 
affect the WPI of food items in model development.
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Data

This work used the monthly index of sixty 
individual items from the food-product 
category of the Indian WPI from April 2011 
to June 2022, i.e., one hundred thirty-five 
months of data (https://data.gov.in/resource/
wholesale-price-index-base-year-2011-12-
till-last-month).

Table 1 reveals the divisions of the 
data set. This work applied the training set 
for feature extraction, tuning the model 
hyper-parameters, and estimating the model 
parameters and model building. The fifteen-
month hold-out test set is used for forecast 
accuracy computation of the models.

Proposed Neural Approach

An extreme learning machine (ELM) is a 
feed-forward neural network. It consists 
primarily of a single hidden layer and 
exhibits considerably quick convergence 
than conventional ones (Wang et al., 2022). 

Figure 1. Research outline

Table 1 
Data partition

Start End Duration (months) Description
April 2011 June 2022 135 Full dataset
April 2011 March 2021 120 Training set
April 2021 June 2022 15 Test set

The ELM uses 'Moore-Penrose generalized inverse' to set the randomly assigned weights 
instead of backpropagation (Erdem, 2020). Kourentzes (2019b) suggested the following 
for better modeling of time series with neural approaches: utilizing differences for trend 
removal as trend modeling is not a strong suit for them and using seasonal dummy(s) to 
model deterministic seasonality. The ELM is a quick learner, simple, and efficient. ELM 
approach exhibited promising performances when applied to diverse time-series data 
(Chakraborty et al., 2022; Feng et al., 2021; Talkhi et al., 2021; Niu et al., 2019).

The structure of the proposed ELM-based neural approach for forecasting the WPIs 
of the individual items from the food-product category of India is as follows:
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•	 Input (X) = {x1, x2, ..., xn, ds1, ds2, ..., dsm} where xi is autocorrelated lags identified 
from the ACF plot of the time-series and dsj is seasonal dummy(s) to model 
deterministic seasonality. The deterministic seasonality is identified using the 
Canova-Hansen test.

•	 Single hidden layer
•	 No. of neurons in the hidden layer (N) = N1

•	 Hyper-parameter tuning (Figure 2) of the ELM network to get the optimum N1 
value from the search space (S) where S = {100, 200, ...,1200}

•	 Weights of output layer estimated by lasso regression with CV
•	 20 networks trained to deliver ensemble forecasts
•	 Used median operator to combine forecasts
•	 Applied first-order differencing for trend removal of the time series

Figure 2. Hyper-parameter tuning technique

This work employed the 'nnfor ' 
package of R (Kourentzes, 2019a) to 
develop the ELM. The proposed ELM, 
rather than using the offered automatic 
input selection procedure, employed a 
tailored strategy for input selection, selected 
the weight estimation type among the 
available estimation types (i.e., lasso, ridge, 
stepwise, and linear regressions), specified 
the combination operator from the set 
offered ones (i.e., mean, KDE estimation 
based mode, and median), selected the 
number of training networks, applied the 
number of differencing to detrend the data, 
designed the hyper-parameter search space 
to determine the number of hidden nodes for 
optimization, and tuned the ELM to obtain 
the optimized ELM from the specified 
search space.

Chakraborty et al. (2022) offered an 
ELM with many (6000) hidden nodes. 
Kourentzes (2019b) suggested using one 
hundred nodes in the hidden layer by 
default and adjusting it as required. This 
work designed the hyper-parameter search 
space of the proposed ELM using a heuristic 
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approach. It starts from the default 100 and increases in the equal interval (step length 
100, i.e., equal to the default value) up to 1200. The authors developed it considering the 
trade-off between model performance, speed, and computational cost. Expanding the search 
space may deliver better performance but with much slower performance and increased 
computational costs.

Other Approaches

This work applied several approaches for forecasting fifteen months of out-of-sample 
values of the sixty WPIs. It employed six standard time-series forecast techniques, which 
are as follows: linear regression (TSLM), SES, DES, TES, Auto-ARIMA, and Auto-ETS. 
The work further utilized four automatic neural approaches, namely, feedforward neural 
network (FFNN), generalized regression neural network (GRNN), Multilayer Perceptron 
(MLP), and ELM. This work additionally explored four state-of-the-art approaches: an MLP 
(Das & Chakrabarti, 2021) and three ensembles (Perone, 2022; Shaub, 2020) to evaluate 
the performance of the proposed ELM. Das and Chakrabarti (2021) developed an MLP to 
forecast the WPIs of some selected food products from India, whereas Perone (2022) applied 
the ARIMA-ETS-based ensembles in COVID-19 case prediction. Shaub (2020) used an 
ARIMA-THETAF-TBATS ensemble approach for quick and precise forecasting of time-
series data. It also employed seven LSTM-based models presented by others (Brownlee, 
2018; Staffini, 2022; Patel et al., 2018; Jia et al., 2019) to assess the proposed ELM.

Accuracy Metrics

This work utilized the following forecast accuracy metrics (Saba et al., 2021; https://www.
rdocumentation.org/packages/DescTools/versions/0.99.36/topics/Measures%20of%20
Accuracy): Root-Mean-Square-Error (RMSE) and Mean-Absolute-Percentage-Error 
(MAPE). Several authors (Fan et al., 2010; Yadav & Nath, 2019) evaluated the model 
performance as follows: (a) high accuracy when MAPE ≤ 10, (b) good accuracy when 10 
≤ MAPE ≤ 20, (c) reasonable accuracy when 20 ≤ MAPE ≤ 50, and (d) inaccurate when 
MAPE ≥ 50.

This work computed the forecast accuracies (i.e., forecast-MAPE and forecast-RMSE) 
using the forecasts and test set. An in-sample prediction and training set is used to calculate 
in-sample RMSE.

Experimental Setup

This paper employed the following packages of R (https://www.r-project.org/): 
•	 Linear, SES, DES, TES, ETS, ARIMA, FFNN models: forecast package (Hyndman, 

Athanasopoulos, et al., 2022; Hyndman & Khandakar, 2008)
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•	 MLP, ELM models: nnfor package (Kourentzes, 2019a)
•	 GRNN model: tsfgrnn package (Frias-Bustamante et al., 2022)
•	 Ensemble models: forecastHybrid package (Shaub & Ellis, 2020)
•	 Feature extraction: tsfeatures package (Hyndman, Kang, et al., 2022)

RESULTS
Features of the WPI

This work extracted the linearity, curvature, and auto-correlated lag features of each WPI. 
The researchers grouped the WPIs employing the extracted curvature and linearity features 
(Figure 3). Figure 3 reveals that the WPIs are heterogeneous based on the obtained linearity 
and curvature groupings.

2, 3.33%
Linearity: positive
Curvature: positive

Linearity: positive
Curvature: negative

Linearity: negative
Curvature: negative

Figure 3. Grouping of the WPIs

Optimized ELM for Each WPI

The current work developed the ELM 
model for each WPI using the proposed 
methodology for obtaining the optimized 
ELM, and Table 2 tabulates the optimized 
ELM architecture for each of them.

Table 2
Optimized ELM

Item 
Code

Item Name Optimal Inputs Optimized 
ELMAuto-

correlated 
lags (xi)

Seasonal 
dummies 

(dsj)

Input 
(X)

WPI1 'Buffalo meat, fresh/frozen' 21 11 32 [32-100-1] *
WPI2 'Meat of goat, fresh or chilled' 23 11 34 [34-100-1] *
WPI3 'Other meats, preserved/

processed'
31 - 31 [31-100-1] $

WPI4 'Chicken/duck, dressed - fresh/
frozen'

22 11 33 [33-100-1] *

WPI5 'Shrimps/Prawns - Processed/
Frozen'

11 - 11 [11-100-1] $

WPI6 'Fish frozen/canned/processed' 29 11 40 [40-100-1] *
WPI7 'Fruit Juice including 

concentrates'
12 11 23 [23-100-1] *
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Table 2 (Continue)

Item 
Code

Item Name Optimal Inputs Optimized 
ELMAuto-

correlated 
lags (xi)

Seasonal 
dummies 

(dsj)

Input 
(X)

WPI8 'Fruit pulp' 20 - 20 [20-100-1] $

WPI9 'Jams, jellies, marmalades
and puree'

35 11 46 [46-100-1] *

WPI10 'Sauces of Vegetables 
(Tomato, Chilli, 
Soya & others)'

16 - 16 [16-100-1] $

WPI11 'Vanaspati' 29 - 29 [29-100-1] $

WPI12 'Mustard Oil' 12 11 23 [23-100-1] *
WPI13 'Soyabean Oil' 14 11 25 [25-1000-1] *
WPI14 'Sunflower Oil' 12 - 12 [12-400-1] $

WPI15 'Groundnut Oil' 11 - 11 [11-900-1] $

WPI16 'Castor Oil' 23 11 34 [34-100-1] *
WPI17 'Rice Bran Oil' 31 11 42 [42-100-1] *
WPI18 'Palm Oil' 15 - 15 [15-1000-1] $

WPI19 'Rapeseed Oil' 10 11 21 [21-100-1] *
WPI20 'Copra oil' 24 11 35 [35-700-1] *
WPI21 'Cotton seed Oil' 18 - 18 [18-1000-1] $

WPI22 'Condensed Milk' 29 11 40 [40-100-1] *
WPI23 'Ghee' 35 - 35 [35-200-1] $

WPI24 'Butter' 35 11 46 [46-100-1] *
WPI25 'Ice cream' 31 - 31 [31-100-1] $

WPI26 'Powder Milk' 13 11 24 [24-100-1] *
WPI27 'Maida' 24 11 35 [35-1200-1] *
WPI28 'Wheat flour (Atta)' 30 11 41 [41-100-1] *
WPI29 'Wheat Bran' 29 11 40 [40-700-1] *
WPI30 'Sooji (rawa)' 26 11 37 [37-100-1] *
WPI31 'Flour of cereals other than 

rice and wheat'
26 11 37 [37-100-1] *

WPI32 'Gram powder (besan)' 15 11 26 [26-900-1] *
WPI33 'Rice, Non-basmati' 33 11 44 [44-100-1] *
WPI34 'Basmati rice' 14 - 14 [14-100-1] $

WPI35 'Rice products' 27 11 38 [38-700-1] *
WPI36 'Vegetable starch' 12 - 12 [12-100-1] $

WPI37 'Biscuit, cookies' 30 - 30 [30-100-1] $

WPI38 'Bread, buns & croissant' 32 - 32 [32-100-1] $

WPI39 'Cakes, pastries & muffins' 29 11 40 [40-100-1] *
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Table 2 (Continue)
Item 
Code

Item Name Optimal Inputs Optimized 
ELMAuto-

correlated 
lags (xi)

Seasonal 
dummies 

(dsj)

Input (X)

WPI40 'Sugar' 11 - 11 [11-100-1] $

WPI41 'Molasses' 11 11 22 [22-100-1] *
WPI42 'Bagasse' 25 - 25 [25-100-1] $

WPI43 'Gur' 15 11 26 [26-600-1] *
WPI44 'Honey' 26 - 26 [26-100-1] $

WPI45 'Chocolate & cocoa powder' 28 11 39 [39-500-1] *
WPI46 'Sugar confectionary' 36 - 36 [36-100-1] $

WPI47 'Noodles & similar extruded 
products'

31 - 31 [31-100-1] $

WPI48 'Processed Tea' 27 11 38 [38-1100-1] *
WPI49 'Instant Coffee' 11 11 22 [22-100-1] *
WPI50 'Coffee powder with chicory' 31 - 31 [31-100-1] $

WPI51 'Spices (including mixed 
spices)'

23 11 34 [34-100-1] *

WPI52 'Salt' 17 - 17 [17-100-1] $

WPI53 'Instant Food/Prepared meals 
based on vegetables'

31 - 31 [31-100-1] $

WPI54 'Corn Flake' 33 11 44 [44-100-1] *
WPI55 'Whey powder' 15 - 15 [15-100-1] $

WPI56 'Gola & similar Cattle Feed' 23 11 34 [34-700-1] *
WPI57 'Rice Bran Extract' 25 11 36 [36-100-1] *
WPI58 'Soya preparations

excluding oil'
13 11 24 [24-100-1] *

WPI59 'Cotton seed oil cake' 25 11 36 [36-700-1] *
WPI60 'Mustard oil cake' 14 11 25 [25-100-1] *

Note. * Input nodes of the optimized ELM are auto-correlated lags and seasonal dummies.
$Input nodes of the optimized ELM are auto-correlated lags

Forecast Performance of the Proposed ELM

For forecasting the future values (forecast horizon of fifteen months) of each WPI, this work 
applied the optimized ELM obtained for each. The proposed ELM exhibited outstanding 
results, with nearly eighty-six-point-seven percent of cases, i.e., fifty-two out of sixty indices 
achieved high forecast accuracy. It attained good forecast accuracy for approximately 
eleven-point seven percent indices, i.e., seven out of sixty. Figure 4 exhibits the forecast 
performance of the proposed ELM.
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Figure 4. Forecast performance of the proposed ELM

Table 3 details the group-wise performance of the proposed ELM. The proposed ELM 
performed satisfactorily for group 1. It achieved high percentages of high accuracies for 
the WPIs with negative curvature.

Table 3
Group-wise performance of the proposed ELM
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Group No. Group Description WPI with MAPE ≤ 10
1 Linearity: positive,

Curvature: positive
73.33%

2 Linearity: positive,
Curvature: negative

90.70%

3 Linearity: negative, 
Curvature: negative

100.00%

Forecast Accuracy Comparison of the Proposed ELM with Others

The current work applied six statistical, namely Auto-ARIMA, Auto-ETS, SES, DES, 
TES, and TSLM, and four neural approaches, namely Auto-FFNN, Auto-GRNN, Auto-
MLP, and Auto-ELM, to make a forecast of fifteen months ahead of values for each of 
the sixty WPIs. This work counted the cases when each approach achieved high accuracy 
and compared the results. The proposed ELM topped the list with the highest count, i.e., 
nearly eighty-six-point seven percent high accuracy cases. Further, the work compared the 
proposed ELM’s forecast-MAPE and forecast-RMSE with others and observed that the 
proposed ELM outperformed all in the maximum events. Figures 5, 6, and 7 demonstrate 
the determinations.
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Figure 5. High accuracy: proposed ELM vs. others
Figure 6. Forecast-MAPE comparison: proposed 
ELM vs. others

Figure 7. Forecast-RMSE comparison: proposed 
ELM vs. others

The current work contrasted the proposed 
ELM with the following approaches and 
represents the findings in Figures 8 and 9: 

•	 MLP [2/1/1] (Das & Chakrabarti, 
2021)

•	 ARIMA-ETS equal  weights 
(Perone, 2022)

•	 ARIMA-ETS CV error (Perone, 
2022)

•	 ARIMA-THETAF-TBATS equal 
weights (Shaub, 2020)

The proposed ELM outperformed others 
as regards the counts of high accuracy and 
the number of cases when the proposed 
approach’s accuracy is better.

Table 4 compares the proposed ELM 
with these models (i.e., an MLP and three 
ensemble models presented by others). The 
proposed ELM approach obtained lower 
maximum, mean, and median MAPE values 
than the others and surpassed them.

Figure 8. High forecast accuracy of proposed ELM, 
MLP, and ensemble approaches
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Further, to evaluate the proposed ELM's 
usefulness in forecasting the WPIs compared 
to the deep-learning approaches, this work 
analyzed the performance of the proposed 
ELM with the deep-learning models offered 
by other researchers (Brownlee, 2018; 
Staffini, 2022; Patel et al., 2018; Jia et al., 
2019). This work employed the WPI data 
used in this paper for the purpose. Table 
5 lists the findings. The proposed ELM's 
performance is better than others.

Figure 9. Forecast-MAPE comparison of proposed 
ELM with others

Table 4
Comparison of the proposed ELM with others

Author Model Forecast 
horizon

Maximum 
MAPE

Mean 
MAPE

Median 
MAPE

Das and 
Chakrabarti 

(2021)

MLP [2/1/1]

15 months

22.26 6.51 4.36

Perone (2022) ARIMA-ETS 
equal weights

26.32 6.80 4.53

Perone (2022) ARIMA-ETS 
CV error

26.42 6.80 4.49

Shaub (2020) ARIMA-
THETAF-

TBATS equal 
weights

25.12 6.75 5.06

Our work Optimized 
ELM

21.46 5.63 4.12

Table 5
Comparison of the proposed ELM with deep learning models

Author Model Forecast 
Horizon

Maximum 
MAPE

Mean
MAPE

Median 
MAPE

Brownlee 
(2018)

LSTM 15 months 33.37 8.78 6.05



Pertanika J. Sci. & Technol. 31 (6): 3179 - 3198 (2023)3192

Dipankar Das and Satyajit Chakrabarti

DISCUSSION

This research employed the monthly WPI of sixty items from the Indian WPI’s food-product 
category for one hundred thirty-five months, from April 2011 to June 2022, and divided the 
data into training (one hundred twenty months) and test (out-of-sample fifteen months) sets. 
For each WPI, this work applied the training set for feature extraction (linearity, curvature, 
and auto-correlated lags), developed the forecast models using the proposed ELM and 
twenty-one others, performed fifteen months of out-of-sample predictions operating the 
developed models, and utilized the test set to compute the forecast accuracies of the models. 
This paper grouped the WPIs using the extracted curvature and linearity features. Three 
groups categorized all the indices and revealed the heterogeneity of the WPIs. The positive 
linearity and negative curvature group contained the majority of WPIs. The proposed ELM 
exhibited high accuracy for the majority (nearly eighty-seven percent of the WPIs) and 
outperformed others. It outperformed others as regards the maximum number of cases 
with high accuracy (MAPE ≤ 10). The proposed ELM also exhibited better performance 
regarding forecast-MAPE and forecast-RMSE comparisons. 

Novelties

The following are the novelties of the current work:
•	 Feature extraction (linearity, curvature, and auto-correlated lags) of the WPIs of all 

sixty individual items from the food-product category of the WPI-series of India 
for one hundred twenty months (April 2011 to June 2022)

•	 Grouping of the WPIs based on the extracted curvature and linearity features

Table 5 (Continue)

Author Model Forecast 
Horizon

Maximum 
MAPE

Mean
MAPE

Median 
MAPE

Brownlee 
(2018)

Stacked 
LSTM

15 months

34.03 9.04 6.18

Bi-LSTM 33.89 8.63 5.96

Staffini 
(2022)

Stacked 
LSTM

33.74 8.42 6.70

Patel et al. 
(2018)

Stacked 
LSTM

34.69 8.77 6.25

Jia et al. 
(2019)

LSTM 27.69 8.09 5.75
Bi-LSTM 33.97 8.24 5.91

Our work Optimized 
ELM

21.46 5.63 4.12
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•	 Devising a novel ELM strategy for the WPIs that is straightforward, easy to use, 
and capable of delivering effective forecasting

	○ A simple yet effective way of selecting the inputs and specifying optimum 
hidden neurons by hyper-parameter adjustment from its predefined search space 
to obtain an ELM model for each WPI.

	○ The proposed ELM approach incorporates the following to enhance the 
performance of the models obtained from the ELM strategy offered by 
Kourentzes (2019a): using a bespoke procedure for selecting the inputs rather 
than automated ones; noise and trend removal of data; selection of the weight 
estimation type and combination operator from the offered sets; set the number 
of training networks; hyperparameter tuning using the custom-designed 
search space to obtain the optimized model for each WPI. The proposed ELM 
outperformed the automated ELM.

•	 This work compared the proposed ELM with twenty-one established and state-of-
the-art techniques: six automatic time-series forecasting approaches, five ANNs, 
three ensemble methods presented by others, and seven deep-learning models of 
the other researchers. For the forecast horizon of fifteen months, the proposed ELM 
achieved high forecast accuracies in nearly eighty-seven percent of the items and 
outperformed all.

•	 To the extent of our knowledge, it marks the initial endeavor toward ELM model 
development to forecast the WPIs of sixty food items using these one hundred 
thirty-five months of data. 

•	 Analyzing twenty-two diverse time series forecast approaches (the proposed ELM, 
six automatic time-series forecasting approaches, four automated ANNs, three 
ensemble methods presented by others, one MLP proposed by other researchers, 
and seven deep-learning models of the other authors) in furnishing fifteen months 
of out-of-sample forecasts of the WPIs.

LIMITATIONS
This work applied the proposed ELM to the indices of sixty individual items from the 
food-product category of the Indian WPI series. This work obtained the optimum ELM 
by applying hyper-parameter tuning using its predefined search space. It employed other 
preset conditions, such as the weight estimation technique, the number of training networks, 
and combining operators, to develop the model. This paper has not experimented with the 
proposed approach using different model settings and on other univariate time-series data.

CONCLUSION AND FUTURE WORK
This research focuses on the WPIs of all sixty individual items from the food-product 
category of the current Indian WPI. It aimed to analyze these WPIs and present a suitable 
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forecasting strategy for these indices. The WPIs behaved heterogeneously per their 
extracted feature (i.e., curvature and linearity) based grouping. The grouping of WPIs 
revealed that these sixty WPIs have different trends and patterns, and their characteristics 
have varying natures. Therefore, this work exhibited that the design and performance of 
the proposed ELM approach are not confined to a particular type of univariate series but 
are suitable for a wide variety of time-series data. The Auto-ETS, a standard time-series 
forecast technique, performed best with eighty percent high accuracy cases. As per the 
number of high-accuracy cases, attaining the Auto-ELM, a neural approach is at par with 
it. Both exhibited high accuracy for a considerable quantity of WPIs. The offered ELM 
attained the maximum number of high-accuracy cases (nearly eighty-seven percent) among 
all the employed approaches. It also outshined others for the maximum number of indices 
concerning forecast-MAPE and forecast-RMSE comparisons. In conclusion, this research 
suggests that the proposed ELM is a well-suited prospect for providing effective forecasts 
of these sixty indices.

The future work includes attempting the proposed ELM on additional WPIs to test 
its pertinence. Endeavoring different combinations of model settings with an expanded 
hyper-parameter search space is another approach toward future research.
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